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ABSTRACT: Mixing the liquids hexafluorobenzene (1) and
1,3,5-trimethylbenzene (mesitylene, 2) results in a crystalline
solid with a melting point of 34 °C. The solid consists of
alternating 7—m stacked pillars of both aromatics. This simple
experiment can be used to visually demonstrate the existence and
the effect of noncovalent intermolecular 7—7 stacking interactions.
Both benzene derivatives are relatively benign and widely available,
and the experiment can be performed within minutes for less than
$15 when done on a 22 mL scale (total volume). The
demonstration is very robust, as 1:2 mixtures in volume ratios
between 2/3 and 3/2 all give a visually similar result (molar ratios
of 1.8—0.8). Substituting 2 with the liquid aromatics o-xylene, p-
xylene, and aniline also resulted in the formation of a crystalline
solid, while using many other liquid aromatics did not.

MP= 5°C —45 °C 34 °C
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example, infection of the pandemic causing SARS-CoV-2 i i
begins when its spike proteins bind to a cell membrane enzyme ! i e
(ACE2) via several hydrogen bonds.* i i =
There are many other noncovalent interactions known in the i i - o
scientific literature,"™"> but these are largely unknown to high —1gEE I 1) 8 i AESOmPl = _g 1 i [1-2] (MTYHFB)
school students and undergraduates. An important class of keal-mol* : BN M.P=34%C
molecules that engage in specific intermolecular interactions Figure 1. Aromatic molecules hexafluorobenzene (1) and 1,3,5-
are aromatic rings."* Such conjugated 7-systems typically have trimethylbenzene (2, mesitylene) and their melting points (a). In

panel b, the molecular electrostatic potential maps of 1 and 2 visualize
their polarization. Shown in panel ¢ are three rotated perspective
atoms such as the weakly polarized C-H hydrogen atoms of views of one [1-2] adduct that was geometry optimized using density
carbohydrates.''® The center of an aromatic ring can also be functional theory (gas phase) with complexation energy (AE®™) in
kcal mol™". Shown in panel d is part of the infinite alternating stacking
pattern observed in a crystal structure of [1-2]. The C atoms in the

an electron rich center (i.e., 7-basic) that can interact with H

rendered electron deficient (i.e., z-acidic), which allows it to

interact with electron rich partners such as anions.'” ™" adduct (c, d) are gray for 1 and black for 2. Hydrogen is white, and
Interactions with aromatic rings are highly relevant to biology, fluorine is green. See Materials and Methods for computational
where such interactions commonly occur with the nucleobases details.
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stack with themselves, this is often referred to as a “m—rx Revised:  November 10, 2020 7 N7
stacking interaction”, and these interactions have also been Published: December 4, 2020
widely recognized as important in biological systems.”””*®
Herein, a very simple and cheap experiment is described that AR AR

visualizes intermolecular 7—7 stacking interactions.
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Demonstration

B THE DEMONSTRATION

Background of the Experiment

To show an example of m—n stacking interactions in a
supramolecular chemistry course, we highlight the aromatic
molecules hexafluorobenzene and mesitylene (1 and 2 in
Figure 1a). The molecular electrostatic potential maps of 1 and
2 are shown in Figure 1b and make it intuitively clear that 1 is
m-acidic (blue center, indicating electron depletion), while 2 is
m-basic (red center, indicating electron density). The z—x
stacked dimer can be geometry optimized (Figure lc) with
density functional theory (DFT), which indicates a complex-
ation energy (AE®™") of —9.1 kcal mol™! in the gas phase.
This is about 1.5 times larger than the interaction energy of a
H-bonded water dimer calculated with the same method (—6.3
kcal mol™!, details not given)%_28 and thus on the order of a
strong hydrogen bond.””*" Given these data, it is not
surprising that 1 and 2 can form a cocrystal comprising
infinite one-dimensional 7—x stacks between 1 and 2, as is
illustrated in Figure 1d (CSD refcode MTYHFB03).”"** The
melting point of the cocrystal (34 °C)** is much higher than
the melting points of 1 (5 °C)* and 2 (=45 °C),** thus
illustrating the stabilizing effect of the m—m stacking
interactions.

The Experiment

At room temperature (typically 20—25 °C), 1 and 2 are clear,
colorless liquids while their cocrystal should be a solid. This
implies that mixing 1 and 2 could be a very easy visual
experiment to demonstrate the relevance of intermolecular
m—m stacking interactions. Indeed, mixing equimolar amounts
of 1 (10 mL) and 2 (12 mL) immediately resulted in the
formation of a white crystalline solid under the evolution of
heat. Photos of 1 and 2 before and after mixing are shown in
Figure 2, and video of this process is given as Supporting
Information. The demonstration has been performed in a
lecture theater for first year MSc chemistry students to aid their
appreciation of noncovalent interactions.

Figure 2. Photos of 10 mL of hexafluorobenzene (1) and 12 mL of
mesitylene (2), together with the mixture (right). See Supporting
Information for a video of the process (also on different scales).

Availability, Safety, Robustness, and Scale

Some details of 1 and 2 and several experimental conditions
that were tried are collected in Table 1. What makes this
demonstration particularly attractive is not only that it is visual,
but also that it is trivial to perform, and that 1 and 2 are cheap,
widely available, and relatively nontoxic. Indeed, 10 mL of 1 is
about $9, and 10 mL of 2 costs less than a dollar, which adds
up to about $10 for the experiment shown in Figure 2. Most
chemical laboratories likely have some of both compounds, as
1 is often used as a cheap aromatic solvent for NMR and 2 is

541

Table 1. Some Information about Hexafluorobenzene (1)
and Mesitylene (2) and the Volume and Molar Ratios
Tested with Indicated Outcomes

CeFe (1) C¢H;(CH3); (2)
CAS 392-56-3 108-67-8
MW (g/mol) 186.056 120.190
p (g/cm?) 1.6120 0.8637
bp (°C) 80 165
mp (°C) S —45
LDy, (or.)” >10 g/kg? 6 g/kg
LDy, (der)” na. >2 g/kg
LCy, (inh)” 0.95 mg/L (2 h) 10.2 mg/L (4 h)
price/10 mL” 9-14 0.7-0.9
Volume Ratio in mL of 1:2  Molar Equivalents of 1:2 Olll\:lcb(:;l;‘_ ol
0.9:0.1 10.85° - no
0.8:0.2 4.82° — no
0.7:0.3 2.81% -+
0.6:0.4 1.81% - yes
0.5:0.5 1.21%% — yes
0.5:0.6 1.00° — yes
0.4:0.6 0.80° — yes
0.3:0.7 0.52%" - yes
0.2:0.8 0.30° - £
0.1:0.9 0.13° - no
1.0:1.2 1.00° — yes
5.0:6.0 1.00" - yes
10:12 1.00" - yes'
25:30 1.00" - yes'

“Found online via https://chemicalsafety.com/sds-search/. or. = oral.
der = dermal. inh = inhalation. All numbers are for rat, except the
LCs, value for 1 (mice). For comparison purposes, the values for
toluene are as follows: LDs, (oral), 5.58 g/kg (rat); LDg, (dermal),
12.2 g/kg (rabbit); LCs, (inhalation), 12.5 mg/L (4 h, rat). bPrice
ranges are from British pounds to US dollars (the Euro price will be in
between). The price for 1 is calculated on the basis of a 500 g batch
from Fluorochem (£144, 97% pure); the price of 2 is calculated on
the basis of a 2.5 L batch from Sigma-Aldrich (€185, 98% pure). “The
visual outcome of mixing was either the formation of a white
crystalline solid (no), a clear colorless solution (yes), or the formation
of crystals in a liquid (+) (cf, Figure S2). “Found via https://
scifinder.cas.org/. “Mesitylene was added to hexafluorobenzene using
a syringe. FThe small amount of heat produced appeared to be
sufficient to delay crystallization. The experiment also worked when
the volume of hexafluorobenzene was added to the vial with
mesitylene and vice versa. "The volumes of both liquids were
measured using a measuring cylinder and then mixed together in a
vial/beaker/test tube. ‘A solid is formed directly after mixing, but
there was a significant amount of heat produced which apparently
dissipated slowly so that the mixture only fully solidified after more
than an hour.

frequently used as an internal standard in both gas
chromatography and NMR spectroscopy. Although both 1
and 2 are highly flammable irritants, their toxicity is on par
with that of toluene (see footnote a of Table 1). On the basis
of the oral LDy, values for rat, even a child of about 30 kg
would have to ingest more than 150 g of either substance to
have a 50% chance of dying, a scenario probably cut short by
the unpleasant sensation these irritants likely induce. Never-
theless, both aromatics should obviously be kept away from
children and handled with proper care (gloves and goggles are
recommended).

https://dx.doi.org/10.1021/acs.jchemed.0c01252
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Another attractive feature of the demonstration is that it is
rather robust; molar ratios of 1 versus 2 in the range 1:2—2:1
reliably give a visual effect when tested at a scale of ~1 mL
total volume (see Table 1). Experiments using a molar ratio of
unity were also done on 2.2, 11, 22, and 5SS mL total volumes
(see also Figure S1), which all resulted in the nearly immediate
formation of the crystalline solid. Movies of the experiments
with >2 mL are provided as Supporting Information. In all
experiments, the heat evolved was clearly sensible by hand.
The temperature of an experiment at S5 mL total volume
increased from 24.1 to 35.7 °C in about 1 min after adding 2 to
a stirred batch of 1 (see Supporting Information). The
temperature of this slurry remained at ~36 °C for about 8 min
and very slowly cooled back to room temperature, resulting in
a white solid. The fact that this experiment is easily scaled up
or down makes it feasible to perform the demonstration for a
larger audience or have individual students perform the
experiment. It must be noted that there is a substantial
difference in the densities of 1 (p = 1.6120 g/cm?) and 2 (p =
0.8637 g/ Cm3) which can hinder efficient mixing in narrow
tubes and thus delay the formation of the solid. This is evident
from the two movies at 11 mL total volume using a 20 mL test
tube (see Supporting Information): subsequent addition of 1
to 2 gave two layers that had to be mixed before crystallization
ensued, while simultaneous addition immediately gave a solid.

Variations Such as Aromatics Other Than 2

For more advanced students, the demonstration could easily be
expanded by linking it to other physical experiments such as
measurement of the heat of formation of the cocrystal,
measurement of the phase transition of melting the crystals, or
a (azeotropic?) distillation, just to name a few. Another
variation can be to link such experiments to a computational
evaluation, which can nowadays be done on most desktop
computers. Care must be taken to select the appropriate
computational method that can give a reliable estimate of the
binding enthalpy at a reasonable computational cost. To aid
such considerations, Table S1 lists the interactions energies of
[1--2] computed using molecular mechanics and semi-
empirical and various density functional methods. These data
make clear that dispersion corrected DFT methods must be
used with an appropriate basis set (TPSS-D3/cc-pVTZ is
fastest). Students could also investigate if other aromatics can
be used to create a similar effect (possibly in conjunction with
calculations). The liquid candidates that we tested bear
resemblance to 2 and are shown in Figure 3, ordered by
their melting points. Also indicated in the figure is whether
mixing with an equimolar amount of 1 and the indicated
aromatic resulted in the formation of a solid, the melting point
of this solid, their price in USD per 10 mL, and the
complexation energy (AE™") of the 7—7 stacked dimer with
1 computed by DFT (see also Figure S3).

Mixing 1 and p-xylene (mp = 13 °C)** produced an odd wet
crystalline compound upon slight agitation with a melting
point around laboratory temperature (~25 °C, see also Figure
S4); warming by hand gave a clear solution, while in the fridge
(5 °C) a white solid formed during cooling. The crystal
structure of the 7—x stacked [1-p-xylene] columns is known
(CSD refcode PXYHEB).>**” Using benzene (mp = 5.5 °C)*®
did not result in the formation of a solid (see Figure S4),
although slight cooling did initiate crystallization (the sample
turned solid when refrigerated at S °C). The solid formed is
probably the 7—x stacked [1-benzene] structure that has been
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ol& o b d b

13
+

M.P. -6.0 -25 -34 =37 —45 —48 —66.5 -93
Solid? + + v v x x v x x x

M.P. of solid 26 25 43 38 u.k. u.k. 34 uk. uk. uk.
$/10ml 0.6 1.0 o038 1.2 0.4 0.8 0.8 14 79 0.4

Aol -82 -61 -80 -79 nr. -8.3 -9.1 -8.0 -9.5 -7.3

Figure 3. Mixtures of 0.5 mL of 1 with an equimolar amount of the 7-
basic components at room temperature with results indicating
whether a solid formed (\/ ) or not (X), or whether a solid formed
with a melting point very close to the laboratory temperature of 25 °C
(£). See also Figure S4 for the vials with the end result. Melting
points for the pure z-basic components are displayed below the
respective structure. Also shown are the outcomes of mixing (i.., if a
solid formed), the melting points of the solid formed, and the prices
of each liquid in USD based on the price of a 2.5 L batch from Acros
Organics (except benzene and 1,3,5-triethylbenzene, which were
taken from TCI America, sold in 500 and 25 mL batches,
respectively). The complexation energies (AE©™') computed with
DFT are also provided (see Materials and Methods for details). An
energy decomposition analysis of all the adducts is shown in Figure S3
and indicates that generally these adducts are mainly driven by
dispersion (47—55%), followed by electrostatic interactions (33—
40%) and orbital interactions (11—14%). Dimethylbenzene was a
mixture of the different xylenes and ethylbenzene as evident from an
NMR spectrum (see Figure S3). Melting points in °C and AE®™ in
keal mol™!. uk = unknown; nr = not relevant.

reported previously (CSD refcodes BICVUEO3 and YOW-
WUF), which has a melting point of 25 °C.”> The melting
points of the solids that can be obtained using p-xylene or
benzene are thus less practical for the demonstration at a
typical indoor temperature of ~25 °C. Moreover, use of
benzene must be discouraged as it is a known carcinogen.40

Both aniline (mp = —6 °C)*' and o-xylene (mp = —25 °C)*
showed rapid crystal formation upon mixing with 1 (see Figure
S4), which is in line with the relatively high melting points of
the cocrystals formed (43 and 38 °C, respectively, cf,, Figure
S6). Both are thus also suitable for the demonstration
experiment, although aniline is acutely toxic (LD, = 0.25 g/
kg (rat, oral)) and o-xylene is less safe than 2 (LDs, = 3.6 g/kg
(rat, oral) versus 6 g/kg for 2) and generally less available in a
standard laboratory setting. A movie of mixing 1 and o-xylene
at a 55 mL total scale is provided as Supporting Information.
The solidification process with o-xylene is faster than that with
mesitylene, presumably due to the higher melting point of the
adduct (38 °C versus 34 °C for [1-2]). Mixing 1 and o-xylene
also produced a significant amount of heat, and the mixture
warmed from 23.3 to 38.4 °C in about 3 min (stirring with a
spatula was needed). The crystal structures 1 with either
aniline or o-xylene are not present in the CSD.

None of the other aromatics tested gave a solid at room
temperature when mixing with 1 (Figure S4). Upon cooling to
5 °C, however, the mixture of toluene and 1 also produced
crystals, which are likely the known 77— stacks present in the
crystal structure of [1-toluene] (CSD refcode LOHBUI).”
This indicates that 7—7 stacking likely also occurs in all other
samples, but that the melting points of the assemblies are lower
than S °C. The reason why 1,3,5-triethylbenzene does not
form a solid might be rationalized on the basis of the fact that
the ethyl groups in the energy minimum conformer point
toward one side of the benzene core (see Figure S7). This
likely facilitates the formation of a m—r stacking geometry
(AE©™! js the largest calculated at —9.5 kcal mol™') but
prevents the formation of infinite 1-dimensional stacks such as

https://dx.doi.org/10.1021/acs.jchemed.0c01252
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those observed in [1-benzene] and [1-mesitylene]. Crystal
structures of 1 with anisole, m-xylene, and 1,3,5-triethylben-
zene are not present in the CSD.

Interestingly, the system is sensitive to competitive 7—n
stacking as the mixture of xylenes that consists mostly of m-
xylene (49%) and p-xylene (24%) did not produce crystals, not
even when cooled to S °C (see Figure SS for an NMR
spectrum of the xylene mixture).

A final observation from the data collected in Figure 3 is that
neither the melting point of the aromatic nor the computed
complexation energies seem to be a clear predictor of whether
an equimolar mixture with 1 will produce a crystalline solid.
This could be used to initiate an interesting conversation with
graduate students. Some additional computational data such as
an energy decomposition analysis are provided in Figure S3
and indicate that all adducts are mainly driven by dispersion
(47—55%), followed by electrostatic interactions (33—40%)
and orbital interactions (11—14%).

Literature Discussion and Conclusion

To teach students about noncovalent (intermolecular)
interactions, there is ample material available in the form of
books and (review) articles.'™>° There are several articles
aimed specifically at teaching intermolecular interactions using
conceptual (and computational) teaching methods.**>* There
are also many articles describing experiments based on physical
properties such as vapor pressure, polarity, boiling point, phase
behavior, and salting properties.”*"°° One article was found
describing the solvent dependent luminescence of 3-hydroxy-
flavone (at —196 °C) based on intra- versus intermolecular
hydrogen bonding,"” and one paper describes an experiment
based on protein—protein binding.”® While very insightful, the
experiments cited are relatively difficult and expensive to set
up, and their execution can be too lengthy for the purposes of a
simple demonstration.

In conclusion, the formation of the [1-2] cocrystal is a rarely
quick, easy, inexpensive, safe, and robust experiment to
demonstrate the existence and the effect of #—n stacking
interactions.

B MATERIALS AND METHODS

Aromatics 1 (97% pure) and 2 (98% pure) were purchased
from Fluorochem and Sigma-Aldrich, respectively, and used as
received. Benzene (>99.5% pure from TCI), aniline (99% pure
from Sigma-Aldrich), toluene (>99.5% pure from VWR), o-
xylene (99% pure from Acros Organics), p-xylene (>99% pure
from TCI), m-xylene (99+% pure from Aldrich), xylenes (99%
pure from Acros Organics), 1,3,5-triethylbenzene (98% pure
from Aldrich), and anisole (99% pure from Sigma-Aldrich)
were also used as received. DFT geometry optimization
calculations were performed with Spartan 2016 at the
B3LYP®7°-D3"! /def2-TZVP">”* level of theory, which is
known to give accurate results at reasonable computational
cost and a very low basis set superposition error (BSSE).”'~"*
The molecular fragments were manually oriented in a suitable
constellation before starting an unconstrained geometry
optimization. Individual molecules were also optimized
separately, and the energy difference between those and the
energy of the adduct is the complexation energy (AE“™").
Spartan was also used to calculate the molecular electrostatic
potential maps. The Amsterdam densit7y functional (ADF)"*
modeling suite at the B3LYP®*7°.D3 YTZ2P7*73 level of
theory (no frozen cores) was used to compute the reported
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BSSE corrected interaction energies (AE"S*E, using the “ghost

atoms” option for counterpoise correction) of the optimized
structures reported in Figure S3. The AEPSF energy does not
include the deformation energy. ADF was likewise used to
compute the energy decomposition and “atoms in mole-
cules””® analyses (using the default ADF settings). Details of
the Morokuma—Ziegler inspired energy decomposition
scheme (also given in Figure S3) used in the ADF-suite have
been reported elsewhere,””’® and the scheme has proven
useful to evaluate hydrogen bonding interactions.”””®
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